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1 Introduction
This problem was brought to my attention by Tom Rauch, W8JI, who, in his note to me, had described his experience
and correctly pointed out all the main features that govern the bandwith. These notes are an expanded version of my
reply giving the mathematical explanation.

To fit the most CW signals into the available spectrum, we need to limit the bandwidth taken up by the signals. It is
therefore useful to see how the energy in a dot or dash pulse is distributed around the carrier frequency. Here I give
some notes on how to make this analysis. The main result is that the spectrum for many keying shapes is given by the
product of the spectrum of a square pulse times the spectrum of the slope of the rise and fall behavior of the pulse.

It seems from my experience reading morse, that the rise time should be the main factor in producing code that can
be read by ear comfortably. Since the rise time dominates the bandwidth for the usual CW signal, the analysis shows
that to get a nearly optimal bandwidth to rise time, the keying pulse shape should have a gaussian slope.

In the next section I review basic Fourier analysis of amplitude modulation. I then calculate the spectrum of a pulse
with an exponentially shaped rise and fall as would be produced by simple RC networks. The results suggest the
more general analysis in the following section, with the conclusion that a pulse with gaussian slope, i.e. error
function rise and fall shapes, will have an optimal bandwidth and rise time.

It seems likely that all of this would have been worked out by radio engineers in the early 1900s when CW signals
were first employed.

2 Fourier analysis for amplitude modulation
To analyze the spectrum generated by keying a transmitter let's look at a single ``dot.'' If we imagine we have a
carrier with angular frequency , and we amplitude modulate it with an envelop A(t), we get the amplitude of the

signal from the transmitter is

(1)

To calculate the energy spectrum we Fourier transform this to get

(2)

where

(3)

In the usual case, the modulation  contains frequency components much smaller than the carrier frequency.

Therefore the  is negligible and can be ignored. The energy spectrum of the amplitude modulated signal is

therefore given by

(4)

and since  is real, , and the sidebands are symmetric around the carrier frequency.

It is convenient to write

(5)



so that  here is the frequency difference from the carrier, so that  gives the energy distribution for an angular

frequency of  from the carrier angular frequency. I will call  the sideband energy density.

3 Application to Keying Bandwidth
To get an explicit result, I'll assume an explicit form for a keying waveform. A simple form where the Fourier
transforms can be calculated analytically is the case where the wave builds up exponentially (as in the usual 
circuit) to the carrier value when the key is pressed, and then decays exponetially to zero when the key is released.
That is

(6)

where  is the keying pulse width and  is its time constant. A plot of this waveform is shown in figure 1 for the
cases where  is 4 milliseconds, and  is 20 and 50 milliseconds.

Figure 1: The exponential keying waveforms for a time
constant  of 4 milliseconds and durations of 20 and 50
milliseconds. The 50 millisecond pulse begins at 
milliseconds to separate it from the 20 millisecond pulse.

The fourier transform integral of the amplitude is straightforward and gives

(7)

so that the sideband energy density) becomes

(8)

So the sideband energy density has two factors. If we measure it in dB relative to some fixed value, we add the

logarithms of the factors. The only dependence on  comes from the first factor. The  function is always less
than or equal to 1, so this will subtract from the other factor which only depends on  the time constant which
determines the rise time.

The main features of the sidebands will therefore be given by the rise time, while the length of the pulse will modify
those features somewhat.

Figures 2 and 3 show the energy density in dB referenced to the carrier energy density for  of 20 milliseconds. The
curves are plotted together in figure 4. Each curve is plotted versus frequency .



Figure 2: The sideband energy density for an exponential
keying wave form with  milliseconds and  of 20
milliseconds. The carrier energy density is set to 0 dB.

Figure 3: The sideband energy density for an exponential
keying wave form with  milliseconds and  of 50

milliseconds. The scale is the same as figure 2.

Figure 4: The plots of figures 2 and 3 combined.

Notice that the differences between the 20 millisecond and 50 millisecond pulses are first the energy near the carrier
frequency is larger for the longer pulse as needed since it has about 2.5 times as much energy, and second the
``ringing'' has more oscillations for the longer pulse as expected. The sidebands fall off 12 dB per octave once we are
at frequencies beyond about .



The effect of the keying speed on the bandwidth as long as the rise time is small compared to pulse length is the
change in shape of the central peak. It does get narrower for slower keying and wider for faster keying, however, the
keying speed does not effect the overall bandwidth.

4 General Pulse Shape
I can write a general pulse shape as

(9)

where  and  describe the rising and falling edges of a pulse and are positive functions that go to zero at large

negative  and to 1 at large positive . The Fourier transform of  is the sum of the transforms of the two terms. If
the rising and falling edges have the same form, we can write

(10)

and integrating by parts gives the result

(11)

where  is a square pulse of width ,

(12)

and I have defined  to be the derivative of .

Since  is written as a convolution, its Fourier transform is now the product

(13)

For keying wave forms this has the nice interpretation that the spectrum is given by the spectrum of a square pulse
of length  multiplied by a factor that is the Fourier transform of the slope of the rise and fall wave form.

Except for an unimportant change of the zero of time, the exponential case calculated above can be written as

(14)

The Fourier transforms of these are

(15)

and the sideband energy density is exactly as before.

As we saw for the exponential case, the bandwidth is dominated by the rise and fall time. Therefore it seems
reasonable to try to optimize the rise and fall waveform of the keying pulse. In terms of the function  whose

integral is the rising and falling wave form, we want to simultaneously make its width in real time and in frequency
small. One measure of this is the product of  and  where they are defined as the variances in frequency and
time



(16)

This problem is well known in optics and quantum mechanics where it goes by the name of the minimum uncertainty
wave-packet[1] . The solution is a gaussian

(17)

The Fourier transform of this gaussian is

(18)

and the keying wave form with this  has 

(19)

where  is the error function[2] defined to be

(20)

The differences in the keying wave form are shown by the turn on shape of the keying pulses in figure 5.

Figure 5: A comparison of the error function turn on with the
exponential turn on, both for their respective  values of 4

milliseconds.

In figure 6 I show the keying wave form for  milliseconds and  and 50 milliseconds as in figure 1 for
both the exponential and optimized wave form. Notice that the abrupt changes in the exponential form are absent
from the error function form.



Figure 6: The error function keying waveforms for  of 4
milliseconds and durations of 20 and 50 milliseconds. The 50

millisecond pulse begins at  milliseconds to separate it
from the 20 millisecond pulse.

Figures 7 and 8 show the sideband energy density.

Figure 7: The sideband energy density for an error function
keying wave form with  milliseconds and  of 20
milliseconds. The carrier energy density is set to 0 dB.

Figure 8: The sideband energy density for an error function
keying wave form with  milliseconds and  of 50

milliseconds. The scale is the same as figure 7.



Figure 9: The plots of figures 7 and 8 combined.

5 Extensions and Conclusions
The sideband energy density for many pulse shapes factorizes. The first of the two factors is proportional to the
Fourier transform squared of the square pulse and the second by the Fourier transform squared of the slope of the
rise and fall. The analysis can be easily generalized to an arbitrary sequence of pulses. The Fourier transform of the
single square pulse simply needs to be changed to the Fourier transform of the sequence of square pulses. For a
given rise time, the error function shape for the rise and fall will attenuate unnecessary interference away from the
carrier frequency much better than exponential keying.
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